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The simplest one-dimensional model for the studying of nontrivial geometrical effects is a ring shaped
device which is formed by joining two arms. We explore the possibility to model such a system as a two-level
system (TLS). Of particular interest is the analysis of quantum stirring, where it is not evident that the topology
is properly reflected within the framework of the TLS modeling. On the technical side we provide a practical
“neighboring level” approximation for the analysis of such quantum devices, which remains valid even if the

TLS modeling does not apply.
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I. INTRODUCTION

In this paper we explore the possibility to model a ring
shaped device [Fig. 1(a)] as a two-level system (TLS) [Fig.
1(b)]. We shall see that both technical and conceptual diffi-
culties are involved. The model Hamiltonian is

1
H=—p>+ViE=x,) + Vg(£—xp), 1
2mP A(X=x4) (X —xp) (1)

with periodic boundary conditions over x € [-L/2, L/2] so
as to have a ring geometry, as illustrated in Fig. 1(a). V, and
Vp represent high barriers, such that the ring is composed of
two weakly coupled arms. We assume that we have control
over some geometrical parameters of the model and in par-
ticular over the heights X, and Xy of both barriers. Our main
interest is in the current that flows in the system. The current
through an arbitrary point x, is obtained as the expectation
value of the operator

T= o {pai- )+ i w)p]. )

Having defined the system and its observables we can
consider various dynamical scenarios such as coherent Bloch
oscillations between the two arms. Then we can ask whether
a TLS modeling is meaningful. Of particular interest for us is
the analysis of guantum stirring:' this means to induce a
circulating current by periodic modulation of the potential.

We note that transport due to periodic modulations of the
potential® has been studied mainly in the context of quantum
pumping,’= where the current is induced between reservoirs.
The notion of quantum stirring relates to closed geometry,
where the emerging physical picture is significantly
different.®’

The quantum stirring problem highlights an obvious topo-
logical subtlety: one wonders whether the nontrivial topol-
ogy of the ring is properly reflected in the effective TLS
model.

On the technical side we define the unperturbed Hamil-
tonian M, as the X, =Xp=o0 limit. In this limit the two arms
are disconnected from each other, and the diagonalization
gives a set of eigenenergies E; such that each eigenstate be-
longs to only one of the two arms. Then we make either X,
or Xp or both finite, and we ask what is the perturbation
matrix W;; in the reduced Hamiltonian
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E; 0 Wi Wi

H,‘j = + . (3)
0 E, Wo Wp

Obviously we would like to express the perturbation using
the transmission coefficients of the barriers.

II. OUTLINE

In the first part of the paper (Secs. III-V) we establish the
building blocks. We derive expressions for the perturbation
matrix W;; and for the reduced current operator Z;; and figure
out how the topology is reflected in the reduced description.

In the second part of the paper (Secs. VI and VII) we turn
to the applications. We begin with the simplest problems:
The coherent Bloch oscillations of a particle in a mirror sym-
metric device, and the Wigner decay of a particle from a
short arm to a long arm. Then we continue with the quantum
stirring problem and show how one can derive expressions
for the geometric conductance.

In the third part of the paper (Secs. VIII-X) we address
some nontrivial technical points that are associated with the
analysis, thus exploring the limitations of the TLS modeling.
We demonstrate that even if the TLS modeling does not ap-
ply, we still can use a neighboring level approximation in
order to extract results for the geometric conductance.

In the summary (Sec. XIII) we highlight the practical
value of our findings for the purpose of design and analysis

(b)

FIG. 1. Panel (a): Illustration of a ring shaped device that is
divided by the barriers V, and Vp into two arms of length L; and L,.
The current is measured through the dashed section near barrier A.
In the quantum stirring scenario it is assumed that there is a gate
control over the potential floor of each arm or over the height or the
location of barrier B. Panel (b): Within the framework of the TLS
modeling, the reduced Hilbert space contains two levels. The per-
turbation W;; is due to having finite rather than infinite barriers, so
it corresponds to the difference H—7H(%) and not to V=H-"H(0).
See the text for further details.
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(a)

FIG. 2. (Color online) Upper panel: Two nearly degenerate
eigenfunctions #(x) of a particle in a ring with arms of lengths L,
=1 and L,=2.23. These are the two unperturbed states of Eq. (4).
Lower panel: The exact eigenfunctions assuming that the barriers
are finite (g4=0.28 and gz=0.06). These do not vanish at the
barriers and therefore cannot be written as a superposition of the
unperturbed states. Still we explain in the text how a decent ap-
proximation for the former can be obtained using the neighboring
levels approximation scheme.

of quantum stirring devices, and we briefly relate to the ex-
perimental measurement issue.

III. TLS MODELING SCHEME

The unperturbed eigenstates /(x) are labeled as i=1,2,
corresponding to the two arms of the ring. The associated
eigenenergies are E;=k?/(2m). We have

2 . . .
,7[,(1)()6) - \ L_1$ln(k1x+ ¢;) if x e first arm @

0 if x e second arm

and a similar expression for /?(x), where L, is the length of
the ith arm and |¢| < 7r/2. Two representative eigenstates are
illustrated in Fig. 2. Note that the wave number of the par-
ticle in the ith arm is k;=(7r/L;) X integer. Our interest is in a
very small energy range E; ~ E,~ E, where the wave num-
bers are k;~k,~kp, corresponding to the velocity vg
=(2E/m)"2. We would like to ignore all the other levels.
Later we discuss the validity conditions for this TLS model-
ing scheme.

Once we lower from infinity one barrier, say barrier A, the
two states become coupled. In Sec. IV we consider a delta
barrier and obtain the following expression for the perturba-
tion matrix:
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Vg —
== 2\77 V8as &)
where g, is the transmission of the barrier. For i # j the mi-
nus sign is a convention that fixes the gauge (see Appendix).
In Sec. V we show that essentially the same result applies to
any other type of barrier, but the i=j expression for the en-
ergy shift should be somewhat generalized.
If both barriers are finite the two associated perturbation
terms should be added together and one obtains for the en-
ergy difference

g=(E + Wi + W5) = (E,+ Why + W5), (6)

and for the coupling

K A B UE — [
SEWhAWh=- (=, (D)
2 12 12 va 8A 8B

The latter expression involves a relative sign *¢ that cannot
be gauged away (see Appendix). If we had magnetic flux
penetrating through the ring we could have, instead of the
*¢, an arbitrary phase factor.

Using the Pauli matrices we can write the TLS Hamil-
tonian as

£ k Q
Hij:i z+50’x=30'. (8)
Defining 6 as the angle between ) and the “z” axis, with the
convention 0< @<, the eigenstates n, and mg, of this
Hamiltonian are

Fsin(6/2) cos(6/2)
o) = ( cos(6/2) ) o} = <isin(6’/2) ) ’ ©)

where the * indicates the sign of k. The energy difference
between these eigenstates is

O= \’m. (10)

If we have a symmetric well then the effective coupling be-
tween odd and even levels vanishes (k=0), and then we can
get a degeneracy provided we tune appropriately the energy-
level difference e.

The TLS description is valid if W}, is much smaller com-
pared with the level spacing, namely,

max{g, gz} <L,/L,, (11)

where without loss of generality we assume L; > L,.

In Sec. IX we are going to derive expressions for the
current 7% through barrier A, as defined by Eq. (2) with x,
=x,. One observes that the matrix elements of this operator
in the “standard basis” of Eq. (4) vanish because the unper-
turbed wave functions are zero at the barriers. The more
careful treatment reveals that the reduced operator that gives
the net current from the first arm to the second arm is

K
I,==0

ij 2 ¥y (12)

apd it tl.lI‘l‘l.S out that Zj}: NyZ;j and Ig:)\ 5Lij, where the split-
ting ratio is defined as

155404-2



QUANTUM DYNAMICS AND TRANSPORT IN A DOUBLE...

W?z VgA
)\A =5A B - c [ (]3)
Wi+ Wi Negatgsp

with a similar definition for Az. We have Ay +\z=1, but con-
trary to the naive point of view 0<<A, <1 is not implied.
Rather, if the two states have opposite parities, then one A is
larger than 100%, while the other \ is negative. We shall see
later in Sec. XIII that the physical interpretation of the “split-
ting ratio” requires recognition in the existence of induced
circulating current in the system. Thus the multiple path to-
pology of the system is reflected in the TLS modeling via A.

IV. EXPRESSION FOR W; FOR A DELTA BARRIER

Let us assume that barrier B is infinitely high, while bar-
rier A is modeled as a delta function. In other words, we
consider the simplest possibility of having an infinite well
[(=L/2)<x<(L/2)] which is divided at x=x, by a delta
function

Valx = x4) = X, 8(x = x4). (14)

The total perturbation is obtained from a sequence of infini-
tesimal variations in the barrier height

H(X,) = H(o) - f X (15)

="H(c0) + WA. (16)

For any value of X the Hilbert space of the system is spanned
by a set of (real) eigenfunction labeled by n. The matrix
elements for an infinitesimal variation in the barrier height is

IoH
<§>m = ) Y (x,). (17)

Using the matching conditions for a delta potential at x=x,
we can express the wave function by its derivative

lﬂi n)(XA)

A more elegant way of writing this relation is

om XA[aw">(xA+0) P (x,—0)]. (18)

> 04 (xy), (19)

'J’(n)(xA) =
2m XAa 1.2

where d, is defined as the radial derivative in the direction of
the ath arms that stretch out of the junction at x=x,. Defining
the total radial derivative as d=4J,+d, we get

<ﬂ> o 2
X ) (2mXA)2‘9 (e (). (20)

For a large barrier with small transmission

~ (E)z <1 (21)
84 X, )
the nth and mth states remain similar to some unperturbed ith
and jth states. Accordingly, upon integration we get from Eq.
(15) the result
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Wij=- 2X (92 (e L9 (x0)]. (22)
A
Note that in the last equation the contribution to the total
derivative d comes from one term only because each unper-
turbed wave function ¢/?(x) is nonzero only in one box.
Using Eq. (21) we get Eq. (5).

V. EXPRESSION FOR W;; FOR A GENERAL BARRIER

It is possible to deduce an expression for W;; without
assuming a specific form of potential barrier. For the purpose
of this calculation we describe the barrier at x=x, by a gen-

eral scattering matrix

iVl —ge'® - \*’E
S=e’7( - — _m>. (23)
-\g iVl —ge

Regarding the barrier as a junction it can be embedded either
in a closed ring geometry with the two arms attached or in an
open one-dimensional geometry with two infinite leads at-
tached. In both cases the differential representation of W
should be the same because W is local in space. In other
words Wg» should come out the same for the wave functions
(x) and ¢(x) of the ring, if in the vicinity of x=x, they
are identical with W®(x) and W\(x) of the scattering geom-
etry.

In the scattering geometry it is conventional to label the
two leads by a=1,2 and to define a radial coordinate r=|x
—x,4|. The flux normalized scattering states of the junction
(assuming outgoing waves) are W), By definition we have

1 ) .
/_[e"kE’ _ Sl lelkEr]
\NUE
1 .
,—[— Sy1e"#]
VUE

if r e first lead
P+ =

if r € second lead.

(24)

A similar expression holds for W If the leads are not
coupled, the scattering matrix becomes S, with g=0. In the
vicinity of x=x, the unperturbed scattering states coincide
with those of Eq. (4) up to normalization. Namely, in the
vicinity of x=x, we have the relation

. 2L\
\If<l>(x)=—i<—‘) el ), (25)
Vg
where
1 T
(p,:E 70+Eia0 , (26)

with = sign for i=1,2, respectively.

The relation between the scattering matrix and the pertur-
bation matrix W can be deduced via the 7 matrix formalism.
The S matrix is related to the 7 matrix through S=(1
—iT)S,, or more explicitly

[SSalli, =6 - (WO W), (27)

In leading order T equals W so we have
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(WOIWPD) = i(S - S0)S5 ", (28)
where
[ e'(Sy + Sa) \JF
S—S0=e’70< a 8 (29)
\y’g e [ao(ﬁ'y— 5&)
Thus

Oy + da \r’EeiC’O )
\/Ee_mo 8y - da :
Using Eq. (25) we deduce that each element of (/!|W|y/))
involves multiplication by v/ (4L,L;)""?, while the ay is can-

celed out. This leads to Eq. (5) for the i #j coupling and a
generalized expression for the energy-level shifts.

PO Wy = - ( (30)

VI. WIGNER DECAY AND BLOCH OSCILLATIONS

If the two arms of the ring have exactly the same length
L,=L,=L/2, then the coherent Bloch oscillations of a wave
packet in such a symmetric double well are characterized by
the frequency

vE !/_ !/_
Qpjocn = 2| Wio| = L_|\'8A+ Vgl (31)
1
If one arm of the ring (L;) is very long and the other arm
(L,) is short, then a particle placed initially at the short arm
will decay into the quasicontinuum of the long arm. The
decay rate is given by the Fermi golden rule

2
= X|W12 %, (32)

where A=(7r/L)vy is the mean level spacing. If the arms are
coupled through barrier A while barrier B is infinitely high,
then the decay rate is

Vg
I'= 2, 8a- (33)
This result agrees with the well-known Gamow formula: the
decay rate is given by the attempt frequency multiplied by
the probability to cross the barrier.

If both barriers are finite, it is important to notice that the
quasicontinuum of the long arm is composed of odd and
even states. The state of the short arm, which is either even
or odd, is coupled to states of the same parity with a plus
sign in the expression of Eq. (7) and to states of the opposite
parity with a minus sign. Accordingly, the decay rate is the
sum of the decay rate to states of the same parity and the
decay rate to states of the opposite parity

27T Vg E
F—E —=(Vga =Y 25| =L (ga+2n),
AL WL L, gA 8B 2, 8AT 8B

(34)

where AL =2A is the mean level spacing for states with the
same parity. So in spite of the parity considerations we still
get the naive result that agrees with Gamow formula.
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VII. QUANTUM STIRRING

We assume that we have control over geometrical param-
eters of the device, such as the potential floor in each arm,
the barriers heights, their location, or any other gate con-
trolled feature of the potential landscape. With a control pa-
rameter X we associate a generalized force operator

JH
F=-—. (35)
17).4

Quantum stirring means to induce a circulating current by
changing the parameter X. We assume that the parametric

variation is adiabatic, so we have a linear relation (I):—GX,
where G is known as the geometric conductance.® The Kubo
formalism implies that G equals to the Berry curvature®!!

2 Im[z.nm]fmn
(Em - En)2

G= X

m(#n)

, (36)

where 7 is the level in which the particle is prepared and m
are the other levels.

Within the framework of the TLS modeling the sum in
Eq. (36) contains only one term which involves the states ny
and myg of Eq. (9). For the matrix element of the current
operator we get

K
Ly = [)\ 0'] =i\, (37)
070 2 2

oMo
where \ is the appropriate splitting ratio. The matrix element

of the generalized force operator is calculated using Egs. (9)
and (35),

Fooo %, 0%, (38)
mo= "ol ax T x|
0”0
1 1 a
= Esm(é’)——icos(ﬁ)a—;, (39)
(a2 &K) (40)
20\ "ax " Fox

where we used *sin(6)=«/{) and cos(6)=g/). This leads
to the following result for the geometric conductance:

_ Nk ) de oK 41)
=203 “ox " %ax |

In the analysis of the operation of a stirring device we typi-
cally have a well defined region where the potential is being
varied. We may call this segment “the pump.” It is conve-
nient to measure the current elsewhere, where the potential is
fixed. If barrier A is not part of the “pump” then we can
measure the current at xo=x,. Then it follows from the defi-
nitions of N and « that the product Ak does not change with
time, even if barrier B is modulated. Then we can rewrite the
above formula as

155404-4



QUANTUM DYNAMICS AND TRANSPORT IN A DOUBLE...

2.905

32 32.5 33 33.5 34

32 325 33 335 34
(b) X

FIG. 3. (Color online) We consider a particle of mass m=1 in a
ring of length L=151.43. The position of barrier B is X, so we have
Ly=X and L,=L—X. We calculate numerically k, and @™ for two
neighboring levels (solid and dashed lines). The sum @™ +@™ is
plotted as a dash-dotted line. We have high barriers with g,
~1072 and gz~ 107. Accordingly we expect TLS modeling to be
valid. The dotted lines indicate the values @ =1/2 (expected cross-
ing point) and ® = (expected sum). For the sake of comparison
there is a third dotted line that indicates the value of @ that corre-
sponds to equal amplitudes C;=C,.

)\OKO de oK
G="00 =T 42
293[Kax Sax} (“42)

where A and « are that values at some arbitrary moment of
time. Typically the variation in X leads to a sequence of level
crossings if « is disregarded. These become avoided cross-
ings if « is taken into account. At the vicinity of a crossing
we typically can use a linear approximation

e=6 X (X=X,), (43)

K= Ko+ kX (X=Xp). (44)

The amount of probability dQ=Idt which is being trans-
ported equals —GdX. For an individual crossing the dX inte-
gration over G can be performed using

J ™ alb+cex) dx  2a 45)

o @+ (D +cx)?)? bVa? + %’

J+°° ¢ ax dx _ 2¢2 46)
o @+ b+ aba? +

Then we get the result
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0= * NV + (k€)% (47)

where the = is determined according to the sign of &. We
observed that in order to get the “quantized” value Q=1
there should be neither topological splitting (\=1) nor bar-
rier modulation (k=0) during the transition.

VIII. NEIGHBORING LEVEL APPROXIMATION SCHEME

A major interest is in systems with zero-temperature
Fermi occupation. In such a case Eq. (36) has to be summed
over n up to the Fermi energy. It turns out! that the result is
dominated by the contribution that comes from the coupling
between the last occupied level and its neighboring empty
level. This suggests adopting a neighboring level approxima-
tion scheme that holds irrespective of the validity of the TLS
modeling and coincides with it if the condition of Eq. (11) is
satisfied. The key idea is to characterize each eigenstate by a
mixing parameter

_ [Prob(x € 2)
0=2 arctan( —Prob(x c 1)), (48)

such that ®=0 for states that belong to the first arm and ®
= for states that belong to the second arm. Numerical ex-
amples are presented in Figs. 3 and 4. If we are given O then
we can construct the eigenstate using a procedure that we
describe below. If the TLS modeling applies then ® becomes
essentially the same as 6.

Let us see how we construct the wave function given the
energy E=E,, the mixing parameter @=0,, and the parity
+4 with respect to (say) barrier A, as defined in the Appen-
dix. Consequently it is convenient to set the origin such that
x,=0 and write the nth eigenstate of the ring as

Pr(x) = {

+4C, sin(k;x+ ¢;)  if x e first arm

C, sin(k,x + ¢,)  if x e second arm,
(49)

where C;>0 and |¢|< /2. Assuming kzL> 1, the ampli-
tudes satisfy the normalization condition

1 1
ELIC% + 5L2C§ ~ 1. (50)

C = \/%cos(%), (51)
1

C,= \/%Siﬂ(%). (52)
2

We still have to say what are the wave numbers k; and &, and
the phase shifts ¢. Let us see first how they are determined
within the framework of the TLS modeling and then how
they can be found irrespective of the TLS modeling.

Naively the |ny) and |m,) eigenstates, within the frame-
work of the TLS modeling, are the superposition of the basis
states of Eq. (4) and accordingly

It follows that
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2.905¢
2.9r
2.895¢
2.89f

~ 2.885f
2.88f
2.875¢

2'87—\/—\/

2.865f - Sl

32 325 33
(d) X

FIG. 4. (Color online) The same as the previous figure, but here the TLS modeling does not apply. In the (a) and (c) one barrier is high
(g4~ 1072) and one barrier is low (gz~0.9), while in (b) and (d) both barriers are low (g, ~ gz~ 0.9).

O=0, m-0, (53)
ky = corresponds to the unperturbed E|, (54)
k, = corresponds to the unperturbed E,, (55)
¢, =same as the unperturbed, (56)
@, =same as the unperturbed, (57)
while the true eigenstates are with (see Fig. 2)
=0, 70, (58)
ky = corresponds to E,, (59)
k, = corresponds to E,,, (60)
¢, = shifted, (61)
¢, = shifted. (62)

To be more specific, we have O =~ g and ") = 77— § and
hence ©0)+ @0 =~ 77 if the TLS modeling is valid (see Fig.
4). We note that from Egs. (51) and (52) it follows that
within the framework of the TLS approximation we have
1

clmo ¢l < Zsin(ﬁ). (63)
This will be used later on in order to obtain simplified ex-
pressions for the matrix elements of various operators.

Whether k; and k, in Egs. (54) and (55) correspond to the
same energy or not is not a big difference for us because we
assume k; ~k, ~ kg in any case. The main problem with the
naive version is related to the phase shifts, as demonstrated
in Fig. 2. The variation in the phase shift as the barriers are
lowered reflects that there is a nonzero probability to find the
particle in the region of the barriers. In particular if the
phases ¢; remained the same it would imply that all the
matrix elements of /4 and I would be zero. It is essential to
take the variation in ¢ into account in order to get a nonzero
result for the geometrical conductance. We shall discuss the
calculation of the matrix elements Z,,, and F,,,, in the next
sections. First we would like to discuss how the required
information on the variation in the phases ¢ can be extracted.

In order to express ¢ by ®, we write the wave function of
Eq. (49) as ingoing and outgoing waves and set the origin
x=0 at either one of the barriers, for example, barrier A. We
match the wave functions of the two bonds by the barrier
scattering matrix

i"Cle+i‘P1 iacle_i‘Pl
. =S .
Cye™'?2 A\ Cpeie

and get closed equations for the phase shifts

(64)

\r’l—gsin(2<p1—a—y)=1—§[1+<—2> }, (65)
2 C

- . g Cl 2
V1-gsinRey+a—y)=1-=|1+{—| |. (66)
2 c,
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So far everything is exact. So once we have ® we can find
the phases and construct the wave function. We would like to
focus in the rest of this section in the regime where the TLS
modeling applies. Assuming that ©® is determined by 6 we
want to find what are ¢; and ¢,, so as to construct a proper
wave function. Neglecting terms of order g and expanding
arcsin(1—-x) as /2 * \2x we obtain

~
+a \ L Q)

¢1~y—+zi“—g —ltan<—>, (67)
2 T4 2N, \2

where the =¢ sign should be the same as in Eq. (64), which
can be established by direct substitution. A similar expres-
sion can be obtained for ¢,. We note that within the frame-
work of this TLS approximation we have

L 1
(Wlo) (ﬂo) = + 1 ) 68
@ = @) \gA<L2 o)’ (68)

where the sign is the same as that of k. We now have all the
building blocks needed for the calculation of the matrix ele-
ments.

IX. EXPRESSION FOR Z,,,

If we adopt the TLS point of view, we can postulate a
self-consistent definition of the current operator based on the
continuity equation. For this purpose we define the occupa-
tion operator N for one of the arms as

10
A= (0 o) (69)

and deduce the definition of the current operator from
d ...
z/\/: i(HN] =T, (70)

where 7 is given by Eq. (12). If we turn off the coupling at
barrier A we get the same expression multiplied by A\, while
if we turn off the coupling at barrier B we get the same
expression multiplied by \,4.

The above reasoning bypasses the confrontation which is
involved in carrying out a direct calculation, and hence con-
tains an uncontrolled error which is associated with the as-
sumption that a TLS description of Hilbert space is valid. If
we revert to the original definition of Eq. (2), then the matrix
elements are given by

1
T = i—— (g™ — g g | 71
=15 @YY = gf 5 )y, (71)

For the calculation of 7} we set xy=x,=0. As was already
pointed out, in order to get a nontrivial result, we have to
take into account the phase shifts ¢ which were calculated in
in Sec. VIIIL. Substituting the wave function of Eq. (49) we

get
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I ks
Ton==iy=C ’")C(")[ 5 “rgin(o{) - )

k —
+ n
2

ult sm(go(m) (1”))} ) (72)

Whenever the TLS modeling applies we can substitute Eqgs.
(63) and (68) into Eq. (72). Neglecting the second term we
get

A —. YVE [
ngmg . L 2VrLngA> (73)

where the sign is the same as that of —«. One notices that the
expression for Iﬁomo can be written as Eq. (37) where « and
\ are given by Egs. (7) and (13).

X. STIRRING BY BARRIER MODULATION

In this section we calculate the geometric conductance as
determined by the matrix elements of the generalized force
that is associated with modulation of a delta barrier. The
motivation is to verify the results of the reduced description
against the direct full Hilbert-space calculation. The potential
barrier is given by

VB(XA) =Xp RIEE xB)~ (74)

The stirring is induced by variation in the barrier height Xp.
The associated generalized force is

IH
.7'—=—(9—XB=—5(X Xg), (75)

with the matrix elements
==Yy (76)

For the wave-function amplitudes we use Eq. (63) and for
the phase shifts Eq. (67). We also substitute the scattering
matrix parameters that describe a delta barrier

vp=— T2+ \@, (77)

aB=O’ (78)

where the approximation is valid for gz<<1 and the relation
of gg and Xy is given in Eq. (21). With the above approxi-
mations we get

—Ly s1n(0) ,gB—cos(ﬂ), (79)

4L 1Ly 2VL,L,

fm Ol‘l 0

where the sign should be the same as that of +“. In order to
verify the consistency with the TLS expression, we differen-

tiate Egs. (6) and (7),
de L,-L
=8B . : > (80)
J
K s 8B 81)

Xy LL,

and substitute into Eq. (38). Indeed we obtain the same result
for ‘7:”‘0”0 as above.
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The geometric conductance of Eq. (36) involves the mul-
tiplication of menO with I"omo leading to

12 312
1 ,L,-L, 888 84 8h

4L O

I"lvz Ly+L;ga8p+ 8/14/28’2?/2 (82)
4R 0

The calculation of the transport proceeds as in Sec. VIIL.
XI. STIRRING BY BARRIER TRANSLATION

In complete analogy with Sec. X we would like to calcu-
late the geometric conductance as determined by the matrix
elements of the generalized force which is associated with
the translation of the barrier

oH
f=——=X35’()?—xB). (83)
o"xB
One obtains
men == XB(é'lﬂn lﬂ(m) + ’9¢ " lﬂ(n)), (84)

where Eﬂ is the average derivative on both sides of the bar-
rier. We simplify this expression by using Eq. (19),

1
Fon= [0 9" = 00" 0 g7 )ey, (85)
Assuming high barriers we get in leading order
1
Fon == Emvi(cﬁmcﬁ’” +Cmed), (86)

which together with Eq. (63) leads to

I S Li+L,

F, mu
" 2 FLL,

oo =~ sin(6). (87)
In order to compare the above result for ‘7:'"0"0 with the TLS
result of Eq. (38) we calculate the variation in the potential
floor by taking in Eq. (6) the energies of infinite wells with
Li=xp and L,=L—-xp. We get

Je JLi+L,
—=—-muv;,——+O0g), 88
P FIL (Vg) (88)
oK LZ_LI — —.
3/2(\"8Ai6\"83)~ (89)

oK _, 2Tl
oxpg  (LiL,

Substitute into Eq. (38) indeed leads to the same result for
Fungn, @s above. Note that in this case (unlike Sec. X) the
second term in Eq. (38) which involves the variation in « is
of higher order in gz and therefore should be excluded.
The geometric conductance of Eq. (36) involves the mul-
tiplication of '7:’”0”0 with I”omo leading to
1 — 4L+l Vet Vep
G= N T 0

(90)

The calculation of the transport proceeds as in Sec. VII. One
realizes that a translation of the barrier is effectively equiva-
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lent to the variation in the potential floor difference as long
as it does not involve modulation of its transmission (which
is assumed to be small).

XII. ERROR ESTIMATES AND LIMITATIONS

If we vary a parameter X then the energy levels E,(X)
form a “spaghetti” which is characterized by a mean level
spacing A and possibly by narrow avoided crossings with
splitting A,. For the ring system that we are considering it
follows from the estimate of « that

A
KO ~ min{1, Vhg}, (91)

where b=L;/L, and g=max{g,, gz} The condition Eq. (11)
for the applicability of the TLS modeling ensures that A
<A. In such circumstances Eq. (36) for the geometric con-
ductance, which in essence is a sum of the type = (A,
+nA)~2, implies that the error that is involved in the neigh-
boring level approximation is

error(G) B (ﬂ

2
~bhg<1. 92
G A) § ©2)

Once the TLS modeling fails the error becomes of order
unity. This sounds bad, but in fact it is not so bad. The good
news is that the far levels contribute to G a correction which
is of the same order as the leading term. Therefore with the
neighboring level approximation we can still get a realistic
estimate disregarding numerical prefactors of order unity.

Having b>1 is very interesting because then we have a
nontrivial intermediate regime 1/b << g <<1 where neither first
order perturbation theory with respect to “zero” height bar-
riers nor first order perturbation theory with respect to “infi-
nite” barriers applies. This is the regime where each level of
the small arm forms a distinct Wigner resonance with the
quasicontinuum states of the long arm. Obviously the TLS
modeling is not applicable in this regime, but the neighbor-
ing level approximation still provides a decent starting point
for a calculation. We shall explore this Wigner regime in a
future work.

One may also wonder whether the specific results that we
have obtained for stirring using a delta barrier apply also for
a thick barrier. On physical grounds it is quite obvious that
the induced current is determined by the scattering matrix of
the modulated barrier. Consequently if the S(E) of the modu-
lated barrier is E independent within the energy range of
interest, it can be regarded as representing a delta function,
and the results should come out the same.

Finally one may wonder about the implications of finite
temperature or nonadiabatic driving. These aspects are
complementary to the theme of the present paper. Namely, as
discussed in Ref. 1, at finite temperatures the statistics of the
occupation should be taken into account. So we have to av-
erage (8o to say) over the level that we have labeled as n
with an appropriate weight as implied by the Fermi function.
On the other hand the nonadiabatic effects require to intro-
duce in the denominator of the Kubo formula Eq. (36) a term
that represents the “width” of the Fermi-golden-rule transi-
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tions. Then the weight of the neighboring level in the sum
becomes smaller compared with the total weight of the far
levels.

XIII. SUMMARY

We have developed a practical procedure for the analysis
of a one-dimensional double well system which is both pow-
erful and illuminating. The procedure assumes that we have a
way to find the eigenenergies E, of the device and the mix-
ing ratio ©, of each of them. Given the transmissions of the
barriers we further characterize the device by the splitting
ratio N. With these ingredients in hand we can analyze any
stirring process and obtain explicit expressions for the geo-
metric conductance G. The calculation simplifies if the TLS
modeling applies because then the mixing ratio can be deter-
mined form the diagonalization of a 2 X 2 matrix.

In particular we obtain explicit expressions for G due to
either barrier translation (generalizing a result that was ob-
tained in Ref. 1) or barrier modulation (generalizing a result
that was obtained in Ref. 7) and verify that they agree with
the naive self-consistent TLS calculation. We see that when-
ever the TLS modeling applies the proper calculation in the
full Hilbert space gives the same result as the naive calcula-
tion in the TLS Hilbert space.

As a by product of the TLS analysis we find that the
pumped “charge” during an avoided crossing is not quan-
tized [see Eq. (47)] not only because of the topological split-
ting effect but also due to a dynamical effect that arises if the
barrier is modulated.

The practical importance of the TLS modeling in con-
dense matter physics is obvious. On the other hand the spe-
cific application to the study of quantum stirring deserves a
few words regarding the measurement procedure and the ex-
perimental relevance. As explained in Ref. 1 it should be
clear that the measurement of current in a closed circuit re-
quires special techniques.'?"'* These techniques are typically
used in order to probe persistent currents, which are zero-
order (conservative) effects, while in the present paper we
were discussing driven currents, which are a first-order (geo-
metric) effects. It is of course also possible to measure the
dissipative conductance (as in Ref. 12). During the measure-
ment the coupling to the system should be small. These are
so-called weak measurement conditions. More ambitious
would be to measure the counting statistics, i.e., also the
second moment of Q as discussed in Refs. 15 and 16 which
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is completely analogous to the discussion of noise measure-
ments in open systems.'”!® Finally it should be pointed out
that the formalism above, and hence the results, might apply
to experiments with superconducting circuits (see Ref. 19).
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APPENDIX: CONVENTIONS AND NOTATIONS

Consider two segments that are connected at points that
are labeled as x, and x. In the absence of coupling each
segment is regarded as a one-dimensional box. The unper-
turbed eigenstates are labeled by i (or optionally by j). In the
TLS scheme i=1,2. If the coupling is nonzero the exact
eigenstates are labeled by n (or optionally by m). Within the
framework of the neighboring level approximation scheme
we focus on two levels that we label as n=nq and m=m,. If
the TLS modeling applies then the states n, and m, are re-
garded as linear combinations of i=1,2.

The unperturbed states i=1,2 are characterized by their
parities ! and *+2, respectively. The relative sign *=¢ in Eq.
(7) equals the product of +! and *+2. Inverting the arbitrary
gauge sign of either ¥/"(x) or #®(x) would multiply the
expression in Eq. (5) by a global minus sign, while the rela-
tive sign *=¢ remains unchanged. The gauge-invariant rela-
tive sign is due to the fact that the unperturbed states are
either odd or even: we have plus sign if both states have the
same parity and minus sign if they have opposite parity.

Each exact eigenfunction n, as written in Eq. (49), is char-
acterized by what we call the parity =¢ with respect to bar-
rier A. Positive parity means that the radial derivatives as
defined in Eq. (19) have both the same sign. Optionally we
can define +” as the parity with respect to barrier B. This
parity =¢ is not a symmetry related quantum number, but it
is merely required in order to define the wave function of Eq.
(49) in a unique way given the energy and the mixing ratio.
If the TLS modeling applies then for positive (negative) «
the state n, of Eq. (9) has negative (positive) parity, while the
my state has positive (negative) parity. Within this framework
the parity +” with respect to barrier B is ¢ multiplied by
+c

We have verified that the various * signs through the
paper are consistent, which is not always evident in a super-
ficial look.
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